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Quantum oscillations in graphene are discussed. The effect of interactions are addressed by Kohn’s theorem
regarding de Haas–van Alphen oscillations, which states that electron-electron interactions cannot affect the
oscillation frequencies as long as disorder is neglected and the system is sufficiently screened, which should be
valid for chemical potentials not very close to the Dirac point. We determine the positions of Landau levels in
the presence of potential disorder from exact transfer matrix and finite-size diagonalization calculations. The
positions are shown to be unshifted even for moderate disorder; stronger disorder, can, however, lead to shifts,
but this also appears minimal even for disorder width as large as one half of the bare hopping matrix element
on the graphene lattice. Shubnikov–de Haas oscillations of the conductivity are calculated analytically within
a self-consistent Born approximation of impurity scattering. The oscillatory part of the conductivity follows the
widely invoked Lifshitz-Kosevich form when certain mass and frequency parameters are properly interpreted.
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I. INTRODUCTION

Quantum oscillations of magnetization �de Haas–van Al-
phen �dHvA� effect�, of conductivity �Shubnikov–de Haas
�SdH� effect� and that of Hall coefficient �RH� are excellent
probes for topologies of Fermi surfaces and properties of
Fermi liquids.1 Recently interesting experiments have led to
considerable insight into physical systems such as graphene2

and high-temperature superconductors.3,4 These oscillations
fundamentally arise from Landau-level quantization and
hence their frequencies should be robust with respect to
electron-electron interaction, crystalline potential, as long as
an effective continuum theory exists, and under modest
broadening of the Landau levels due to impurity scattering.
On the other hand the wave form �harmonic content� or am-
plitudes are sensitive to many details.

An elegant theorem for a translationally invariant con-
tinuum system in two dimensions and short-range electron-
electron interactions were formulated by Kohn5 to reveal the
robustness of the frequencies. This is in contrast to the more
complex many-particle analysis of Luttinger,6 which, in prin-
ciple, can also address the wave form or the amplitude of the
oscillations but appears to fail in two dimensions.7 The rea-
son behind Kohn’s theorem is intuitively clear. The magnetic
field is never a small perturbation, especially in two dimen-
sions, where the spectrum converts from continuous to dis-
crete in its presence. Thus, the problem must be exactly di-
agonalized with the magnetic field before considering the
perturbative effects of short-ranged electron-electron interac-
tion, which can in principle be well behaved, modulo a quan-
tum phase transition, or a broken symmetry. Moreover, when
the Landau levels are completely filled, the ground state is
nondegenerate resulting in a special stability similar to magic
nuclei. As the magnetic field is tuned through a sequence of
filled Landau levels, the macroscopic state repeats itself,
hence the periodicity; of course, this is strictly valid only if
the relevant Landau-level index is n�1.

One of the purposes of the present paper is to revisit
Kohn’s theorem in the context of graphene where SdH oscil-
lation frequencies have been shown to be remarkably close

to what a pure noninteracting theory would predict.2 We
show that this is a consequence of Kohn’s theorem despite
the broken translational symmetry due to the crystalline po-
tential, strengthening further the evidence of the Weyl fermi-
onic character of the excitation spectra. In the process, we
bring out some of the subtle aspects of the theorem and its
connection with the more familiar Luttinger theorem regard-
ing the volume of the Fermi surface.8

The second purpose is to provide an exact calculation of
the Landau levels in the presence of disorder and an analyti-
cal self-consistent calculation of SdH within self-consistent
Born approximation �SCBA�. A non-self-consistent calcula-
tion was previously reported,9 as well as a self-consistent
calculation for unitary scatterers10—perhaps such extreme
strong scattering mechanism is not applicable to realistic
graphene samples. Not only do we demonstrate that the os-
cillation frequencies are unshifted to a good approximation
for even moderate disorder but also we obtain the amplitude
and the wave form. The results, when suitably interpreted in
terms of a mass parameter and a frequency scale, are similar
to the widely used Lifshitz-Kosevich formula,11 which, in a
strict sense, cannot be applied in two dimensions. From our
exact numerical calculations, we also show that for very
strong disorder the Landau levels are shifted, but only mini-
mally, bearing some resemblance to the unitary scatterers
treated previously.10 It is probably true that our results also
imply that, to lowest order, results would remain unchanged
when both electron-electron interaction and impurity scatter-
ing are considered together, at least for weak disorder rel-
evant to experiments. The extension to longer-ranged impu-
rity scattering is straightforward and is not discussed.

The plan of the paper is as follows. In Sec. II we discuss
Kohn’s theorem and apply it to graphene. In Sec. III we
provide exact transfer matrix and diagonalization calcula-
tions to determine the position of the Landau levels and their
shifts due to impurity scattering. In Sec. III B we calculate
SdH oscillations within a SCBA developed by Ando.12 Sec-
tion IV contains our concluding remarks and there is an Ap-
pendix containing calculational details.
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II. KOHN’S THEOREM FOR QUANTUM OSCILLATIONS
IN TWO DIMENSIONS

A. Nonrelativistic fermions

There is a precise theorem by Kohn5 that in a two-
dimensional continuum system electron-electron interaction
cannot shift the dHvA frequency in all orders in perturbation
theory. To clarify its content, it is useful to reconsider it. Let
the unperturbed problem be defined by the noninteracting
Hamiltonian, H0, in a rectangular box Lx�Ly. In the Landau
gauge for the magnetic field B �c being the velocity of light
and m being the mass of the electrons�,

H0 =
1

2m
�

i
�px,i

2 + �py,i +
e

c
Bxi�2	 . �1�

The solution to this Landau-level problem is of course famil-
iar. The energy eigenvalues, and eigenfunctions of an inde-
pendent electron are

�n,k = ��c�n +
1

2
�, �n,k = eikyun�x +

�ck

eB
� , �2�

where the frequency �c= eB
mc and the degeneracy of each en-

ergy level is

g = 2
�

�0
, �3�

where the total flux threading the system is �=BLxLy and
the flux quantum is �0=hc /e; the factor of 2 is for spin.

Even though momenta are not good quantum numbers, it
is still useful to depict the spectra on the two-dimensional
kx-ky plane. The degenerate spectra of degeneracy g lie on
concentric circles in this plane, separated by ��c. Since mo-
mentum is no longer a good quantum number, the states are
not located on specific points on the circle but can be viewed
as rotating with frequency �c. The total number of available
states in a volume in the momentum space is unchanged in
spite of the Landau quantization. In particular, if we denote
	A to be the area between the concentric circles, then

LxLy

�2
�2	A =
g

2
. �4�

Imagine that the Fermi level, �F, at T=0 is situated on one
such concentric level such that all states with energy E��F
are completely filled and all the levels for E��F are com-
pletely empty. Then the total number of occupied states is
exactly the same as the system without the magnetic field
and the total energy per electron is also exactly the same.
The area enclosed by the Fermi level, A��F�, follows trivially
from Eq. �4� and is

2
A��F�
�2
�2 =

N

LxLy
, �5�

where N is the total number of particles. That is none other
than the Luttinger sum rule. It is important to note that even
though a magnetic field is never a small perturbation, the
Luttinger sum rule is unchanged.

The magnetic field corresponding to the ground state of a
system with an integer number, n��F�, of Landau levels com-
pletely filled and all the rest completely empty will satisfy

1

Bn
= n��F�

2
e

�c

1

A��F�
. �6�

Note that this ground state is an isolated nondegenerate state
separated by a gap ��c from the excited state. As we in-
crease B, the quantized orbits are drawn out of the Fermi
level and sequentially pass through essentially identical set
of nondegenerate isolated ground states. This of course re-
sults in the periodicity in the properties of the electron gas;
the correction in the limit that n��F��1 is negligible. Peri-
odicity of course does not imply sinusoidal wave form and
can contain higher harmonics.

Now, fix Bn to a completely filled Landau level and turn
on the electron-electron interaction. To all orders in pertur-
bation theory, a nondegenerate isolated ground state will re-
main nondegenerate and therefore the sequence of states cor-
responding to fully filled Landau levels as a function of the
magnetic field will be the same, as in the noninteracting case.
The periodicity is therefore unchanged and is determined by
the enclosed area A��F�, which in turn is fixed by the Lut-
tinger sum rule.

The argument will clearly break down if electron-electron
interaction drives a quantum phase transition as a function of
the interaction strength. A greater likelihood for this happen-
ing is when the Landau level is partially filled and degener-
ate. Indeed, even for higher Landau levels, we know that a
zoo of density wave states is a possibility,13 but Kohn’s theo-
rem should be robust for fully filled Landau levels. Note that
Kohn’s theorem makes no statement about the amplitude of
oscillations and is also silent about the wave form of the
oscillations. In general the periodicity, when Fourier ana-
lyzed will contain harmonics, and the harmonic content of
the nonrelativistic case will be different from the relativistic
case.

B. Crystalline system: Dirac fermions in graphene

We now extend Kohn’s theorem to graphene. It is known
from experiments that SdH oscillation frequencies are in ex-
cellent agreement with the noninteracting system, as though
electron-electron interaction plays no role. This is as it
should be if the theorem holds. There are two basic issues
that need to be dealt with: the crystalline potential that
breaks translational invariance and disorder in graphene
samples. Here we will discuss the former and will leave the
latter to Sec. III.

As before, first let us consider the noninteracting problem.
The low-energy spectrum for which the quasiparticles are
well described by continuum Lorentz invariant Hamiltonians
based on two inequivalent nodes K= � 2


3a , 4


3
3a
� and K�

= � 2

3a ,− 4


3
3a
� in the tight-binding description of the graphene

lattice, with a as the lattice spacing �cf. below�.14 Near the
Dirac point at K the energy eigenfunctions are given by
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− i�vF� · ���r� = E��r� , �7�

where � are the Pauli matrices and vF is the Fermi velocity.
In the plane-wave basis, the k-space Hamiltonian HK
=�vF� ·k. Similarly, for K�, HK�=�vF�� ·k. The spectra for
each energy are twofold degenerate, ignoring spin.

The exact energy eigenvalues for this two-component
Weyl fermion problem are of course trivial, and the corre-
sponding eigenvalues and eigenfunctions in the presence of a
perpendicular magnetic field are well known. While the en-
ergy eigenvalues differ from the corresponding nonrelativis-
tic Landau-level problem, the spinor eigenfunctions are eas-
ily constructed from the corresponding nonrelativistic
problem. However, we will eschew the exact solutions and
only take advantage of the validity of the continuum Hamil-
tonian to formulate the semiclassical dynamics for large Lan-
dau levels that leads to the correct quantum oscillation fre-
quencies. This is exactly what is necessary to demonstrate
Kohn’s theorem for the general case of electrons in a crys-
talline environment. We want to show that the Onsager quan-
tization condition follows from the semiclassical quantiza-
tion of the Landau orbits as the long-wavelength low-energy
Hamiltonian is a valid description, regardless of whether not
the description is in terms of the relativistic Weyl Hamil-
tonian, as for graphene.

In general, for the relativistic quasiparticles the semiclas-
sical equations of motion of a Bloch electron are different
due to the presence of a nontrivial Berry curvature.15 These
are

ṙ =
1

�
�kE�k� − k̇ � ��k� , �8�

�k̇ = − eE −
e

c
ṙ � B , �9�

where E and B are the electric and magnetic fields, respec-
tively. The Berry curvature is defined as

��k� = �k � A�k� , �10�

where

A�k� = i�u�k���ku�k� �11�

is the Berry vector potential. The periodic part of the Bloch
wave function is denoted by u�k�, where  is the band
index.

When E=0 and B=Bẑ, following Chang and Niu,15 it can
be shown that these set of equations of motion lead to the
following semiclassical quantization rule for the area of the
orbit in momentum space:

Ak =
1

2
� �k � dk� · ẑ =

2
eB

�c
�n + �� . �12�

and the Maslov index,

� =
1

2
−

�

2

, �13�

with

� =� A�k� · dk , �14�

as the Berry phase for the orbit.
This phase is easy to compute for graphene because the

eigenspinors for K and K� can be chosen to be

u�,K =
1

2

� 1

�ei�k
�, u�,K� =

1

2

� 1

�e−i�k
� , �15�

where �k=tan−1�ky /kx�. A simple computation shows that

AK�k� = i�u�,K�k���ku�,K�k� = −
�̂

2k
, �16�

AK��k� = i�u�,K��k���ku�,K��k� =
�̂

2k
, �17�

where �̂ is the azimuthal angle in the kx−ky plane and k
=
kx

2+ky
2. The Berry phase � is therefore �
.

The semiclassical quantization formula is then

Ak =
2
eB

�c
n . �18�

This implies once again that the magnetic field correspond-
ing to a fully filled Landau level at the Fermi energy is given
exactly by Eq. �6�. The only remaining subtlety now is to
note that the area of the Fermi pocket is


kF
2 =

2
eB

�c
n��F� , �19�

from which it immediately follows that the Fermi energy for
the relativistic Dirac spectrum is given by

�F = �vFkF =
vF

�B


2n��F� . �20�

The magnetic length

�B = 
�c/�eB� . �21�

The appearance of this Berry phase �= �
 for massless
nodal quasiparticles with linear spectrum is a well-known
topological property of the Hamiltonian.16,17

From here on the argument proceeds identically to the
nonrelativistic case, the only difference being the spacing
between the Landau levels, which is not constant as a func-
tion of n. As we turn on the electron-electron interaction, the
energy levels are drawn out of the Fermi level in exactly the
same sequence as the noninteracting case. Therefore the fre-
quency of dHvA is unchanged. To the extent that the low-
energy continuum theory adequately describes graphene,
there should be no effect of electron-electron interaction on
the oscillation frequency.

Due to the relativistic spectrum of massless quasiparticles
in �2+1� dimensions the densities of states vanish linearly at
the nodal points, and the Coulomb interaction is not
screened. This leads to strong long-range interaction between
the quasiparticles in graphene. In the presence of a moderate
nonzero chemical potential the interaction will be screened,
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however. For small chemical potentials long-range interac-
tions can lead to broken symmetries and hence to a failure of
Kohn’s theorem.

The nodal relativistic spectra can also arise from a con-
densate. An example is nodal fermionic quasiparticles of a
particle-hole condensate in l=2 angular momentum channel,
as in a singlet d-density wave �DDW�, staggered flux phase,
or an orbital antiferromagnet.18 This linearized Dirac fermion
theory is valid for momentum small compared to inverse
lattice spacing and energy small compared to the bandwidth.
For a wide range of the chemical potential, small compared
to the bandwidth, one can still use the linearized continuum
theory and results identical to those above hold.

III. EFFECTS OF DISORDER

A. Landau levels in graphene

Consider the tight-binding Hamiltonian, H, on a honey-
comb lattice of dimension Lx�Ly in a perpendicular mag-
netic field, as shown in Fig. 1, which is

H = �
n

��n,Acn,A
† cn,A + �n,Bcn,B

† cn,B�

− �
n

�
k=1

3

�tn,ke
ian,kcn,A

† cn+�k,B + H.c.� , �22�

where the summation n ranges over all unit cells and cn,A and
cn,B are the fermionic annihilation operators in the unit cell n
for the sublattices A and B, respectively. The spin degrees of
freedoms are omitted as we assume that the magnetic field is
sufficiently strong to completely polarize them. In principle,
disorder can take various forms,19 but here we shall consider
the on-site energy �n,A and �n,B to be random variables uni-
formly distributed in the range �−gV /2, gV /2� corresponding
to potential disorder. We choose the hopping matrix element
tn,k= t=1.0, providing a natural energy scale. The phases an,k
are chosen such that the magnetic flux per hexagonal

plaquette, �, is 1 /Q, in units of the flux quanta �0=hc /e. We
choose a gauge such that an,1=
i /Q for the vertical bonds in
slice i as in Fig. 1 and an,2=an,3=0.

The Hall conductance �xy can be computed by imposing
periodic boundary conditions in both directions of the system
and diagonalizing the Hamiltonian �22� to obtain a set of
energy eigenvalues E and eigenvectors � for 
=1, . . . ,Lx�Ly. Then from the Kubo formula:20

�xy�E� =
4
ie2

LxLyh
�

E�E�E�

��vy�����vx� − �x ↔ y�
�E − E��2 ,

�23�

where vx= �H ,x� / i� is the velocity operator along the x di-
rection and similarly for vy. Note that the bonds in Fig. 1 that
are not parallel to y direction contribute to both vx and vy.
The summation corresponds to all states below and above the
energy E. Finally, the expression is disorder averaged.

The longitudinal conductance �xx is studied using the well
developed transfer-matrix method. Consider a quasi-one-
dimensional �quasi-1D� system, Lx�Ly �2M with a periodic
boundary condition only along the y direction, where M de-
notes the number of unit cells in a slice along y direction. Let
�i= ��i,1 ,�i,2 , . . . ,�i,2M�T be the amplitudes on the slice i for
an eigenstate with a given energy E; then the amplitudes on
the successive slices are related by the matrix multiplication,

��i+1

�i
	 = �Vi

−1�E − Hi� − Vi
−1Vi−1

1 0
	� �i

�i−1
	 , �24�

where Vi is a diagonal matrix with elements
�ti,1 , ti,2 , . . . , ti,2M� representing the hopping matrix elements
connecting the slices i and i+1 and Hi is the Hamiltonian
within the slice. All positive Lyapunov exponents of the
transfer matrix,21 �1��2� . . . ��2M, are computed by iter-
ating Eq. �24� and performing orthonormalization regularly.
The convergence of this algorithm is guaranteed by the well-
known Osledec theorem.22 The conductance per square, �xx,
is given by the Landauer formula23–26 �note the factor of 
3
in the argument of hyperbolic cosine due to the honeycomb
lattice�,

�xx =
e2

h
�
i=1

2M
1

cosh2�2
3M�i�
. �25�

The localization length in the quasi-1D system with Ly
=2M is given by �M =1 /�2M.

The results are shown in Fig. 2, where the Hall conduc-
tance �xy and the longitudinal conductance �xx are computed
as a function of energy E with parameters �=1 /2000 and for
potential disorder gV=0.5,0.05,0.01,0.001. The longitudinal
conductance �xx peaks almost exactly at the Landau levels,

En = sgn�n���
2
vF

�B
�
�n� , �26�

where

vF = 3ta/2� �27�

is the Fermi velocity, a being the lattice spacing. The only
exception is the case gV=0.5, as shown in Fig. 3, for which

FIG. 1. �Color online� Graphene lattice. Lattice sites belonging
to the same shaded horizontal or vertical stripes share the same
indices i or j. The solid circles correspond to the A sublattice and
the open circles to the B sublattice. The three nearest-neighbor vec-
tors joining the two sublattices are �k, with k=1,2 ,3.

GOSWAMI, JIA, AND CHAKRAVARTY PHYSICAL REVIEW B 78, 245406 �2008�

245406-4



there is a minimal shift. Recall that this is a very large dis-
order as the energy scale is in terms of the hopping param-
eter, t, which is set to unity. Each level is broadened due to
disorder and finite-size effects. Because the spacings be-
tween successive Landau bands become smaller as �n� in-
creases, the overlap between the neighboring bands increases
resulting in the overall parabolic shape of the background
�xx. The Hall conductivity �xy jumps by 2e2 /h every time the
energy passes through a Landau level, corresponding to the
twofold valley degeneracy in this system.

B. SdH oscillations: Analytical results in the self-consistent
Born approximation

Shubnikov–de Haas oscillations in graphene can be cal-
culated numerically by the method described in Sec. III A.
However, for realistic fields, it is difficult to control the ac-
curacy because of the essential singularity corresponding to
the magnetic field corresponding to all quantum oscillation
phenomena. Moreover, the dependence on the physical pa-
rameters is not particularly transparent. For this reason we
adopt an analytical SCBA developed by Ando.12

In the presence of disorder, the imaginary part of the self-
energy at the Fermi level is nonzero. Hence, Luttinger’s
theorem and Kohn’s argument are not immediately appli-
cable. However, for weak disorder, the quasiparticle lifetime
at the Fermi energy, ���F��� �henceforth by � we will mean
���F��, can be long and the Fermi surface can be reasonably
well defined within the uncertainty � /�. If the Fermi energy
�F is very large, we can use � /�F� as a small parameter. Due
to disorder the Landau levels are broadened into bands and
in the limit of overlapping Landau levels ��c��1� explicit
calculations using SCBA show that the period of oscillations
is unchanged to an excellent approximation. The correction
terms to the period are of the order �� / ��F���2. For unitary
scatterers, the shift is much larger,10 but it is doubtful that
such strong potential scattering is relevant to graphene.2

Since the gap between the relativistic Landau levels de-
creases for higher Landau levels, disorder will have stronger
effect in contrast to the equally spaced nonrelativistic Landau
levels. Hence, in the semiclassical limit of higher Landau
levels, the damping will be stronger for the relativistic case.
For the sake of simplicity let us consider the short-range
impurity potential. Following Ando,12,27 the self-consistency
equation for the self-energy ���� in SCBA can be written as

���� =
�3�2

4
�F�
�

m=−Nc

Nc 1

� − Em − ����
. �28�

Note that we have introduced a cutoff Nc, which is of the
order of the bandwidth. It determines the limit of the appli-
cability of the linearized Dirac spectra. Let

� − ���� = X��� = X� + iX���� , �29�

a��� = X����/���� , �30�

b��� = X����/���� , �31�

where �=
2vF / lB. Ignoring the arguments of a and b, the
self-consistency equation becomes

�

��c
− a − ib =

�

2
�F�
��

m=0

Nc �a + ib�
�a + ib�2 − m

−
1

2

1

a + ib	 .

�32�

The sum on the right-hand side can be calculated using
the Poison summation formula described in the Appendix,
and, to leading orders in �� /�F��, a and b are given by

FIG. 2. �Color online� The Hall conductance �xy �plateaus� and
the longitudinal conductance �xx as a function of energy E. The
magnetic flux through the hexagonal plaquette, �=1 /2000 in units
of the flux quantum �0=hc /e and the potential disorder gV

=0.5,0.05,0.01,0.001 from top to bottom. For �xx, M was chosen
to be 48, and for �xy, the system size was chosen to be 4000�10
for the exact diagonalization. In physical units the magnetic field
corresponds to B�40 T. The vertical dashed lines indicate the lo-
cations of the Landau levels at En=sgn�n��
3
�n� /1000�1/2 for the
parameters considered here. There are virtually no shifts of the po-
sitions of the Landau levels except for gV=0.5 for which it is
minimal.

n1/2

g
V

= 0.005
g

V
= 0.01

g
V

= 0.05
g

V
= 0.5

FIG. 3. �Color online� The location of the peaks in Fig. 2. Note
that the slope is essentially the same as the noninteracting system
except for gV=0.5 for which it is slightly different.
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a �
�

��
�1 − � �

2�F�
�2

−
�

�F�
e−
/�c

����/�F�2
sin�2
yF

B
+ ��	 ,

�33�

b �
�

2�F��
�1 + 2e−
/�c

����/�F�2
cos�2
yF

B
+ ��	 , �34�

where �� tan−1�� /2�F�� and y=1−3�� /2�F��2. We have de-
fined a mass parameter m�=�F /vF

2 and the cyclotron fre-
quency �c

�=eB /m�c of a hypothetical nonrelativistic system.
Here the frequency F is

F��� =
�c

2
e
A��� , �35�

and the area of the Fermi pocket is given by

A��� = 
� �

�vF
�2

. �36�

The condition a�b implies �� /2�F���1, which justifies the
weak disorder approximation. When �� /2�F���1, the
SCBA is insufficient to treat the randomness correctly.
Hence, in our calculation we assume �� /2�F���1.

Using the Kubo formula the longitudinal dc conductivity
�xx becomes

�xx = − �
−�

�

d�
� f���

��
Kxx��� , �37�

where f��� is the Fermi-Dirac distribution function and the
kernel Kxx is12

Kxx��� =
�e���2


2�
�
m=0

�

Igm�� + i0�Igm+1�� + i0� . �38�

In the above equation

gm��� =
� − �

�� − ��2 − m����2 . �39�

At T=0, �xx�T=0�=Kxx��F�. After using the Poisson’s sum-
mation formula the conductivity can be written as

�xx � �̃�1 + 2e−
/�c
���cos�2
F��F�

B
	

+
��c

���2 − 1

��c
���2 + 1

cos�y
2
F��F�

B
+ �	

−
3�

2�F�
sin�y

2
F��F�
B

+ �	�� �40�

where

�̃ =
�0

��c
���2 + 1

, �41�

and �0=4nee
2� /
m�; ne is the density of quasiparticles cor-

responding to one of the valleys for a given spin direction.
In contrast to the nonrelativistic Landau levels, the fre-

quency of the oscillation is changed by a factor y and there is

a small phase shift in the oscillations. Hence, the robustness
of the oscillation frequency and the phase of the oscillations
do depend on disorder but only very weakly. In the SdH
experiments, this phase shift has not been observed and this
can be attributed to the weakness of the disorder. When the
disorder is weak, i.e., �� /2�F���1, y�1, ��0, and the
conductivity becomes

�xx � �̃�1 +
4��c

���2e−
/�c
��

��c
���2 + 1

cos�2
F��F�
B

	� . �42�

If �c
���1 the oscillations will be heavily damped.

Although this expression appears identical to the corre-
sponding nonrelativistic formula,11,12 it is actually different.
The definition of �c

� depends on the m� that we have defined,
which in turn depends on �F. Therefore, the oscillations will
be damped more strongly for higher Landau levels. The rea-
son behind this is the smaller gaps between the higher Lan-
dau levels, as compared to the nonrelativistic case.

IV. CONCLUSIONS

In conclusion, we reiterate that the positions of the Lan-
dau levels, as well the frequencies of SDH oscillations, are
remarkably robust with respect both impurity scattering and
electron-electron interaction �as long as the chemical poten-
tial is not too close to the Dirac points�. This seems to
be consistent with experiments.2 In the presence of both
interaction and randomness the Luttinger’s many-body
formalism6 becomes applicable even for two dimensions in
the presence of disorder and/or thermal broadening. From the
above considerations, if the disorder is small enough
�� /�F��1�, the oscillation frequencies can be expected to be
proportional to the true Fermi-surface area of the pure inter-
acting problem. In principle one can attempt to treat the in-
teraction within a Hartree-Fock �HF� approximation to esti-
mate the effects of the interaction on the amplitude of the
oscillations. But, there is no reason to trust the HF results.
The correlation energy contributions can have equally impor-
tant effects on the amplitude; in particular, on the effective
mass parameter. One also needs to account for the disorder
induced vertex corrections for the self-energy contributions
from the interaction. Such a calculation will be tedious but is
important to understand the effects of inelastic scattering
rates, and we shall relegate such detailed calculations for a
future publication.
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APPENDIX: SCBA

Consider the real and the imaginary parts of Eq. �32�;

4
�F�

�
� �

��
− a� +

a

a2 + b2 = 2aS−, �A1�
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4
�F�

�
+

1

a2 + b2 = 2S+, �A2�

where

S� = �
m=0

Nc a2 + b2 � m

�a2 − b2 − m�2 + 4a2b2 �A3�

�
0

Nc

dm�1 + 2�
k=1

�

cos�2
km�	
�

a2 + b2 � m

�a2 − b2 − m�2 + 4a2b2 . �A4�

Now choosing m−a2+b2=z, we obtain

S+ = �
−a2+b2

Nc−a2+b2

dz�1 + 2�
k=1

�

cos�2
k�a2 − b2 + z���
�

2a2 + z

z2 + 4a2b2 , �A5�

S− = �
−a2+b2

Nc−a2+b2

dz�1 + 2�
k=1

�

cos�2
k�a2 − b2 + z���
�

2b2 − z

z2 + 4a2b2 . �A6�

Because Nc�a���2�b���2 for ���F, we can let the upper
limit tend to � and the lower limit to −�. Note that after this
change in limits the terms that are odd in z vanish. We find
the following analytic expressions:

S+ =

a

b
+

2


b

a2 + b2�

k=1

�

e−4
kab

�cos�2
k�a2 − b2� + tan−1�b

a
�	 , �A7�

S− =

b

a
+

2


a

a2 + b2�

k=1

�

e−4
kab

�sin�2
k�a2 − b2� + tan−1�b

a
�	 . �A8�

Substituting S� in Eqs. �A1� and �A2�, retaining only the
first harmonic and only terms to leading order in �� /�F��2,
we arrive at Eqs. �33� and �34�.

The conductivity kernel Kxx in Eq. �38� can be expressed
as

Kxx =
e2b2


2�
�
m=0

Nc a2 + b2 + m

�a2 − b2 − m�2 + 4a2b2

�
a2 + b2 + m + 1

�a2 − b2 − m − 1�2 + 4a2b2 . �A9�

Now using Poisson’s summation formula we get

Kxx =
2e2b2


2�
�I1 + �

k=1

�

cos�2
k�a2 − b2��I2�k�

− �
k=1

�

sin�2
k�a2 − b2��I3�k�� , �A10�

where

2I1 = �
−�

�

dz
�2a2 + z��2a2 + z + 1�

�z2 + 4a2b2���z + 1�2 + 4a2b2�
, �A11�

I2�k� = �
−�

�

dz
cos�2
kz��2a2 + z��2a2 + z + 1�
�z2 + 4a2b2���z + 1�2 + 4a2b2�

,

�A12�

I3�k� = �
−�

�

dz
sin�2
kz��2a2 + z��2a2 + z + 1�
�z2 + 4a2b2���z + 1�2 + 4a2b2�

. �A13�

We can clearly see 2I1= I2�k=0�, and all the integrals can be
evaluated by performing a single integral,

I4 = �
−�

�

dz
ei2
kz�2a2 + z��2a2 + z + 1�

�z2 + 4a2b2���z + 1�2 + 4a2b2�
. �A14�

The integrand has simple poles at z= �2iab and z=
−1�2iab, and we evaluate I4 by closing the contour in the
upper half-plane. It turns out that I3=Im I4=0 and

I2�k� = Re I4 =
8
a

b
e−4
kab a2 + b2

1 + 16a2b2 . �A15�

Now substituting the values of these integrals in Eq. �A10�
and also retaining only the first harmonic of the oscillations,
we obtain

Kxx �
8e2ab


2�

a2 + b2

1 + 16a2b2 �1 + 2e−4
abcos�2
�a2 − b2��� .

�A16�

Now substituting the expressions for a and b and keeping
terms up to O�� /�F��2, we obtain Eq. �40�.
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